个人简介
姚志健,男,1975年8月生,硕士研究生,教授,美国《数学评论》评论员。
教育和工作经历:
2000.09—2003.06 广西师范大学,硕士;
2003.07—至今 mg电子游戏官网_mg老虎机游戏-电玩城下载,数理学院,教师
研究方向
脉冲微分方程、差分方程、时标动力学方程的周期解与概周期解及稳定性
教学情况
本科生课程:数学分析、高等数学、概率论与数理统计、线性代数、常微分方程、数学物理方法等。
科研情况
主持安徽省教育厅自然科学项目3项, 参与安徽省自然科学基金项目1项. 在《Applied Mathematical Modelling》、《Topological Methods in Nonlinear Analysis》、《International Journal of Biomathematics》、《Mathematical Methods in the Applied Sciences》、《Advances in Difference Equations》、《International Journal of Nonlinear Sciences and Numerical Simulation》、《应用数学》、《数学杂志》、《数学的实践与认识》、《数学研究》、《微分方程年刊》、《生物数学学报》等国内外学术期刊发表论文30余篇,其中SCI收录17篇。论文“具有收获的非自治阶段结构竞争模型的周期解与概周期解”荣获安徽省第五届自然科学优秀学术论文三等奖。
主持科研项目:
1、安徽省教育厅自然科学重点项目:脉冲效应下的生物动力系统概周期解及指数稳定性研究(编号KJ2017A487).
2、安徽省教育厅自然科学重点项目:时标上的种群生态系统的周期解与稳定性研究(编号KJ2014A043).
3、安徽省教育厅自然科学项目:脉冲微分方程在种群动力学系统中的应用(编号KJ2008B236).
参与科研项目:
1、安徽省自然科学基金项目:非线性Fredholm型无穷积分方程及其在非局部振动问题中的应用(编号11040606M01).
代表论文/著作:
[31] Zhijian Yao, Jehad Alzabut, Debaldev Jana, Dynamics of the almost periodic discrete Mackey?Glass model, Mathematics, 2018, 6(12), 333:1-14. ( SCI )
[30] Zhijian Yao, Existence and exponential stability of unique almost periodic solution for Lasota?Wazewska red blood cell model with perturbation on time scales, Mathematical Methods in the Applied Sciences, 2017, 40(13):4709-4715. ( SCI )
[29] Zhijian Yao, Jehad Alzabut, Dynamics of almost periodic Nicholson?s blowflies model with nonlinear density-dependent mortality term, Italian Journal of Pure and Applied Mathematics, 2017, 38: 218-234. ( EI )
[28] Zhijian Yao, Almost periodic solution of Nicholson?s blowflies difference equation with linear harvesting term, International Journal of Biomathematics, 2016, 9(4): 1-15. ( SCI )
[27] Zhijian Yao, Existence and exponential stability of almost periodic positive solution for host-macroparasite difference model, International Journal of Biomathematics, 2016, 9(2): 1-11. ( SCI )
[26] Zhijian Yao, Existence and global attractivity of the unique positive periodic solution for discrete Hematopoiesis model, Topological Methods in Nonlinear Analysis , 2015, 45(2): 423-437. ( SCI )
[25] Zhijian Yao, Almost periodic solution of Nicholson?s blowflies model with linear harvesting term and impulsive effects, International Journal of Biomathematics, 2015, 8(3): 1-18. ( SCI )
[24] Zhijian Yao, Existence and global exponential stability of an almost periodic solution for a host-macroparasite equation on time scales, Advances in Difference Equations, 2015, 41: 1-12. ( SCI )
[23] Zhijian Yao, New results on existence and exponential stability of the unique positive almost periodic solution for Hematopoiesis model, Applied Mathematical Modelling , 2015,39(23-24):7113-7123. ( SCI )
[22] Zhijian Yao, Existence and exponential stability of the unique positive almost periodic solution for impulsive Nicholson?s blowflies model with linear harvesting term, Applied Mathematical Modelling, 2015,39(23-24): 7124-7133. ( SCI )
[21] Zhijian Yao, Almost periodicity of impulsive Hematopoiesis model with infinite delay, Journal of Nonlinear Science and Applications, 2015, 8(5):856-865. ( SCI )
[20] Zhijian Yao, New results of positive solutions for second-order nonlinear three-point integral boundary value problems, Journal of Nonlinear Science and Applications, 2015, 8(2): 93-98. ( SCI )
[19] Zhijian Yao, Uniqueness and exponential stability of almost periodic positive solution for Lasota-Wazewska model with impulse and infinite delay, Mathematical Methods in the Applied Sciences, 2015, 38(4) : 677-684. ( SCI )
[18] Zhijian Yao, Existence and Exponential Stability of the Unique Almost Periodic Positive Solution for Discrete Nicholson?s Blowflies Model, International Journal of Nonlinear Sciences and Numerical Simulation, 2015, 16(3-4): 185-190. ( SCI )
[17] Zhijian Yao, Uniqueness and global exponential stability of almost periodic solution for Hematopoiesis model on time scales, Journal of Nonlinear Science and Applications, 2015, 8(2): 142-152. ( SCI )
[16] Zhijian Yao, Existence and exponential stability of the unique positive almost periodic solution for the Lasota-Wazewska difference model, Advances in Difference Equations, 2014, 206: 1-11. ( SCI )
[15] Zhijian Yao, Existence and exponential convergence of almost periodic positive solution for Nicholson?s blowflies discrete model with linear harvesting term, Mathematical Methods in the Applied Sciences, 2014, 37(16) : 2354-2362. ( SCI )
[14] Zhijian Yao, Shengli Xie, Nengfu Yu, Dynamic Behaviors of n-species Impulsive Competitive System, International Journal of Nonlinear Sciences and Numerical Simulation, 2014, 15(6): 347-363. ( SCI )
[13] 姚志健, 时标上的具有线性收获项的Nicholson’s Blowflies模型概周期正解的存在性及全局渐近稳定性, 应用数学,2015, 28(1): 224-232.
[12] 姚志健, 非线性三点边值问题正解的新的存在性定理, 数学杂志,2014, 34(1): 173-178.
[11] 姚志健, 具有线性收获项的 Nicholson's Blowflies 差分模型正概周期解的存在唯一性与指数收敛性, 应用数学, 2014, 27(1):157-165.
[10] Zhijian Yao, Shengli Xie, Nengfu Yu, Dynamics of cooperative predator–prey system with impulsive effects and Beddington–DeAngelis functional response, Journal of the Egyptian Mathematical Society, 2013, 21(3): 213-223.
[9] 姚志健, 一类泛函微分方程的多重正周期解, 生物数学学报, 2013, 28(1):8-22.
[8] 姚志健, 几类具有无穷时滞泛函微分方程正周期解的存在性, 生物数学学报,2011, 26(1):73-80.
[7] Zhijian Yao, Existence of multiple positive periodic solutions to a class of integro-differential equation , 微分方程年刊, 2011, 27(1): 86-93.
[6] 姚志健, 脉冲泛函微分方程的正周期解, 数学的实践与认识, 2010, 40(6): 195-203.
[5] 姚志健, 具有脉冲的Schoner竞争模型的周期解的存在性, 数学研究,2008,41(2):181-191.
[4] Zhijian Yao, Periodic solution to Predator-Prey chain system with impulsive effects and Beddington-DeAngelis functional response, 微分方程年刊,2008,24(3):367-378.
[3] 姚志健, 多种群阶段结构竞争系统的周期解与概周期解, 生物数学学报,2008,23(1):116-124.
[2] 姚志健,一类脉冲捕食系统的周期解的存在性,应用科学学报,2007,25(6):657-660.
[1] 姚志健,具有收获的非自治阶段结构竞争模型的周期解与概周期解(英文),微分方程年刊,2005,21(1):73-80.